Skip to main content

Oxidative Stress in Cancer

  • Chapter
  • First Online:
Book cover Oxidative Stress and Redox Regulation

Abstract

Increased oxidative stress is a common feature observed in many different types of cancer. Depending on the radical formed, its concentration, and cellular location where its generation occurs, reactive oxygen species (ROS) have multiple functions within tumor cells. ROS-induced macromolecule damage can contribute to tumor initiation. Low levels of ROS can initiate cellular signaling pathways that mediate tumor cell proliferation, survival and tumor progression to a metastatic phenotype. High levels of ROS initiate signaling pathways that mediate tumor cell death, but also contribute to formation of cancer stem cells that induce tumor recurrence. Understanding the multitude and complexity of ROS-regulated pathways in cancer cells and targeted modulation of intracellular ROS levels using antioxidants or chemotherapy at different stages of tumor progression may be an effective strategy for combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DG:

2-deoxyglucose

4-HNE:

4-Hydroxy-noneal

Ask1:

apoptosis signal-regulating kinase-1

ATM:

ataxia telangiectasia mutated

BSO:

L-S, R-buthionine sulphoximine

CSC:

cancer stem cells

DR:

death receptor

DRL:

death receptor ligand

EGF:

epidermal growth factor

EGF-R:

epidermal growth factor-receptor

Erk1/2:

extracellular-regulated kinases 1/2

FOXO:

forkhead homeobox type O

GF:

growth factor

GF-R:

growth factor receptor

GSH:

glutathione

GSSG:

glutathione disulphide

GPX:

glutathione peroxidase

GST:

Glutathione S-transferase

H2O2 :

hydrogen peroxide

HIF-1:

hypoxia-inducible factor-1

JNK:

c-Jun N-terminal Kinase

MAPK:

mitogen-activated protein kinase

MMP:

matrix metalloproteinase

MPTP:

mitochondrial permeability transition pore

mROS:

mitochondrial ROS

NF-κB:

nuclear factor κ-B

NOX:

NADPH oxidase

PDK1:

phosphoinositide-dependent kinase 1

PDGF:

platelet-derived growth factor

PDGF-R:

platelet-derived growth factor-receptor

PI3-K:

phosphatidylinositol 3-kinase

PKC:

protein kinase C

PKD:

protein kinase D

ROS:

reactive oxygen species

Prdx:

peroxiredoxin

PTEN:

phosphatase and tensin homologue

SOD:

superoxide dismutase

TGFβ:

transforming growth factor β

TIMP:

tissue inhibitor of metalloproteinases

TNFα:

tumor necrosis factor α

VEGF:

vascular epithelial growth factor.

References

  • Ahmed KM, Cao N, Li JJ (2006) HER-2 and NF-kappaB as the targets for therapy-resistant breast cancer. Anticancer Res 26(6B):4235–4243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aykin-Burns N et al (2009) Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418(1):29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    CAS  PubMed  Google Scholar 

  • Bae YS et al (2000) Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275(14):10527–10531

    CAS  PubMed  Google Scholar 

  • Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371

    CAS  PubMed  Google Scholar 

  • Bechtel W, Bauer G (2009) Modulation of intercellular ROS signaling of human tumor cells. Anticancer Res 29(11):4559–4570

    CAS  PubMed  Google Scholar 

  • Bendayan M, Reddy JK (1982) Immunocytochemical localization of catalase and heat-labile enoyl-CoA hydratase in the livers of normal and peroxisome proliferator-treated rats. Lab Invest 47(4):364–369

    CAS  PubMed  Google Scholar 

  • Beutler E (1969) Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. J Clin Invest 48(10):1957–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenneisen P, Sies H, Scharffetter-Kochanek K (2002) Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci 973:31–43

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9–10):951–965

    CAS  PubMed  Google Scholar 

  • Brown NS, Bicknell R (2001) Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 3(5):323–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Browne SE et al (2004) Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice. Free Radic Biol Med 36(7):938–942

    CAS  PubMed  Google Scholar 

  • Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18(4):775–794

    CAS  PubMed  Google Scholar 

  • Burdon RH, Gill V, Rice-Evans C (1990) Oxidative stress and tumour cell proliferation. Free Radic Res Commun 11(1–3):65–76

    CAS  PubMed  Google Scholar 

  • Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26

    CAS  PubMed  Google Scholar 

  • Chan DW et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    CAS  PubMed  Google Scholar 

  • Cheng GC et al (2004) Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp Cell Res 300(2):297–307

    CAS  PubMed  Google Scholar 

  • Chiarugi P, Fiaschi T (2007) Redox signalling in anchorage-dependent cell growth. Cell Signal 19(4):672–682

    CAS  PubMed  Google Scholar 

  • Chiu TT et al (2007) Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol 292(2):C767–C777

    CAS  PubMed  Google Scholar 

  • Claffey KP et al (1996) Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 56(1):172–181

    CAS  PubMed  Google Scholar 

  • Coleman MC et al (2008) 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med 44(3):322–331

    CAS  PubMed  Google Scholar 

  • Cowell CF et al (2009) Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. J Cell Biochem 106(4):714–728

    CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    CAS  PubMed  Google Scholar 

  • Cui S et al (1994) Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or -independent mechanisms. Cancer Res 54(9):2462–2467

    CAS  PubMed  Google Scholar 

  • Cullen JJ et al (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63(6):1297–1303

    CAS  PubMed  Google Scholar 

  • Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72

    CAS  PubMed  Google Scholar 

  • Dansen TB, Wirtz KW (2001) The peroxisome in oxidative stress. IUBMB Life 51(4):223–230

    CAS  PubMed  Google Scholar 

  • Dayal D et al (2009) Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat Res 172(6):737–745

    CAS  PubMed Central  PubMed  Google Scholar 

  • del Rio LA et al (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13(5):557–580

    PubMed  Google Scholar 

  • Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8(6):425–437

    CAS  PubMed  Google Scholar 

  • Diaz B et al (2009) Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2(88):ra53

    PubMed Central  PubMed  Google Scholar 

  • Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37(1):15–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erler JT et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226

    CAS  PubMed  Google Scholar 

  • Felty Q, Singh KP, Roy D (2005) Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene 24(31):4883–4893

    CAS  PubMed  Google Scholar 

  • Ferraro D et al (2006) Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25(26):3689–3698

    CAS  PubMed  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476(1–2):52–54

    CAS  PubMed  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121(1):29–40

    CAS  PubMed  Google Scholar 

  • Gardner HW (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med 7(1):65–86

    CAS  PubMed  Google Scholar 

  • Gianni D et al (2008) The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 19(7):2984–2994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20(15):5680–5689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    CAS  PubMed  Google Scholar 

  • Hashimoto F, Hayashi H (1990) Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2. J Biochem 108(3):426–431

    CAS  PubMed  Google Scholar 

  • Higaki Y et al (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol Endocrinol Metab 294(5):E889–E897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hitchler MJ et al (2006) Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 1(4):163–171

    PubMed  Google Scholar 

  • Hitchler MJ, Oberley LW, Domann FE (2008) Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radic Biol Med 45(11):1573–1580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    CAS  PubMed  Google Scholar 

  • Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383(3–4):347–364

    CAS  PubMed  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707

    CAS  PubMed  Google Scholar 

  • Huo YY et al (2008) PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts. Free Radic Biol Med 44(8):1578–1591

    CAS  PubMed  Google Scholar 

  • Imbert V et al (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86(5):787–798

    CAS  PubMed  Google Scholar 

  • Irani K et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306):1649–1652

    CAS  PubMed  Google Scholar 

  • Jo M et al (2011) Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma. J Gastroenterol 46(6):809–821

    CAS  PubMed  Google Scholar 

  • Johnson TM et al (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93(21):11848–11852

    CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    CAS  PubMed  Google Scholar 

  • Keibel A, Singh V, Sharma MC (2009) Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des 15(17):1949–1955

    CAS  PubMed  Google Scholar 

  • Khavari TA, Rinn J (2007) Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle 6(23):2928–2931

    CAS  PubMed  Google Scholar 

  • Kheradmand F et al (1998) Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280(5365):898–902

    CAS  PubMed  Google Scholar 

  • Kim JS, Huang TY, Bokoch GM (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell 20(11):2650–2660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar B et al (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785

    CAS  PubMed  Google Scholar 

  • Kundu N, Zhang S, Fulton AM (1995) Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis 13(1):16–22

    CAS  PubMed  Google Scholar 

  • Lander HM et al (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272(7):4323–4326

    CAS  PubMed  Google Scholar 

  • Lauschke H et al (2002) Lipid peroxidation as additional marker in patients with colorectal cancer. Results of a preliminary study. Eur Surg Res 34(5):346–350

    CAS  PubMed  Google Scholar 

  • Lee SR et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342

    CAS  PubMed  Google Scholar 

  • Lee WC et al (2005) Role of ERK in hydrogen peroxide-induced cell death of human glioma cells. Neurochem Res 30(2):263–270

    CAS  PubMed  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32(9):790–796

    CAS  PubMed  Google Scholar 

  • Li Q, Engelhardt JF (2006) Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase. J Biol Chem 281(3):1495–1505

    CAS  PubMed  Google Scholar 

  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143

    CAS  PubMed  Google Scholar 

  • Li D et al (2002) DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat Res 513(1–2):37–48

    CAS  PubMed  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496

    CAS  PubMed  Google Scholar 

  • Litwin JA et al (1987) Immunocytochemical localization of peroxisomal enzymes in human liver biopsies. Am J Pathol 128(1):141–150

    CAS  PubMed  Google Scholar 

  • Liu LZ et al (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533

    CAS  PubMed  Google Scholar 

  • Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270(20):11727–11730

    CAS  PubMed  Google Scholar 

  • Lu T, Finkel T (2008) Free radicals and senescence. Exp Cell Res 314(9):1918–1922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maynard S et al (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10

    CAS  PubMed  Google Scholar 

  • McCubrey JA et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meier B et al (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263(2):539–545

    CAS  PubMed  Google Scholar 

  • Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399

    CAS  PubMed  Google Scholar 

  • Menon SG et al (2005) Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid Redox Signal 7(5–6):711–718

    CAS  PubMed  Google Scholar 

  • Mihailovic T et al (2004) Protein kinase D2 mediates activation of nuclear factor kappaB by Bcr-Abl in Bcr-Abl + human myeloid leukemia cells. Cancer Res 64(24):8939–8944

    CAS  PubMed  Google Scholar 

  • Minamoto T, Mai M, Ronai Z (2000) K-ras mutation: early detection in molecular diagnosis and risk assessment of colorectal, pancreas, and lung cancers – a review. Cancer Detect Prev 24(1):1–12

    CAS  PubMed  Google Scholar 

  • Minamoto T, Ougolkov AV, Mai M (2002) Detection of oncogenes in the diagnosis of cancers with active oncogenic signaling. Expert Rev Mol Diagn 2(6):565–575

    CAS  PubMed  Google Scholar 

  • Mochizuki T et al (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25(26):3699–3707

    CAS  PubMed  Google Scholar 

  • Nakashima I et al (2002) Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid Redox Signal 4(3):517–531

    CAS  PubMed  Google Scholar 

  • Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784

    CAS  PubMed  Google Scholar 

  • Neumann CA et al (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424(6948):561–565

    CAS  PubMed  Google Scholar 

  • North JA, Spector AA, Buettner GR (1994) Cell fatty acid composition affects free radical formation during lipid peroxidation. Am J Physiol 267(1 Pt 1):C177–C188

    CAS  PubMed  Google Scholar 

  • Ohba M et al (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126(4):1079–1088

    CAS  PubMed  Google Scholar 

  • Ostrakhovitch EA, Cherian MG (2005) Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem 95(6):1120–1134

    CAS  PubMed  Google Scholar 

  • Pani G, Galeotti T (2011) Role of MnSOD and p66shc in mitochondrial response to p53. Antioxid Redox Signal 15(6):1715–1727

    CAS  PubMed  Google Scholar 

  • Pani G et al (2009) Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal 11(11):2791–2806

    CAS  PubMed  Google Scholar 

  • Parkash J, Felty Q, Roy D (2006) Estrogen exerts a spatial and temporal influence on reactive oxygen species generation that precedes calcium uptake in high-capacity mitochondria: implications for rapid nongenomic signaling of cell growth. Biochemistry 45(9):2872–2881

    CAS  PubMed  Google Scholar 

  • Pastorino JG, Tafani M, Farber JL (1999) Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 274(27):19411–19416

    CAS  PubMed  Google Scholar 

  • Pelicano H et al (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 69(6):2375–2383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    CAS  PubMed  Google Scholar 

  • Prasad N et al (2000) Oxidative stress and vanadate induce tyrosine phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). Biochemistry 39(23):6929–6935

    CAS  PubMed  Google Scholar 

  • Qi XJ, Wildey GM, Howe PH (2006) Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. J Biol Chem 281(2):813–823

    CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    CAS  PubMed  Google Scholar 

  • Rabbani ZN et al (2009) Antiangiogenic action of redox-modulating Mn(III) ortho-tetrakis-N-ethylpyridylporphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med 47:992–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radisky DC et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436(7047):123–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopalan S et al (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98(11):2572–2579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947

    CAS  PubMed  Google Scholar 

  • Reichenbach J et al (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4(3):465–469

    CAS  PubMed  Google Scholar 

  • Rhee SG et al (1999) A family of novel peroxidases, peroxiredoxins. Biofactors 10(2–3):207–209

    CAS  PubMed  Google Scholar 

  • Rhee SG et al (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000(53):pe1

    CAS  PubMed  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    CAS  PubMed  Google Scholar 

  • Rofstad EK et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707

    CAS  PubMed  Google Scholar 

  • Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda) 26(1):23–33

    CAS  Google Scholar 

  • Ruiz-Ramos R et al (2009) Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674(1–2):109–115

    CAS  PubMed  Google Scholar 

  • Saitoh M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606

    CAS  PubMed  Google Scholar 

  • Sarsour EH et al (2008) Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 7(3):405–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17(4):221–237

    CAS  PubMed  Google Scholar 

  • Senger DR et al (1994) Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis 14(1–6):385–394

    CAS  PubMed  Google Scholar 

  • Shackleton M et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    CAS  PubMed  Google Scholar 

  • Sharma R et al (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6(2):289–300

    CAS  PubMed  Google Scholar 

  • Shim HY et al (2007) Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol Cells 24(1):95–104

    CAS  PubMed  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415–418

    CAS  PubMed  Google Scholar 

  • Singh I (1996) Mammalian peroxisomes: metabolism of oxygen and reactive oxygen species. Ann N Y Acad Sci 804:612–627

    CAS  PubMed  Google Scholar 

  • Song J et al (2009) PKD prevents H2O2-induced apoptosis via NF-kappaB and p38 MAPK in RIE-1 cells. Biochem Biophys Res Commun 378(3):610–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spitz DR et al (2000) Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci 899:349–362

    CAS  PubMed  Google Scholar 

  • Squier TC, Bigelow DJ (2000) Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci 5:D504–D526

    CAS  PubMed  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    CAS  PubMed  Google Scholar 

  • Storz P (2006) Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci STKE 2006(332):re3

    PubMed  Google Scholar 

  • Storz P (2007) Mitochondrial ROS–radical detoxification, mediated by protein kinase D. Trends Cell Biol 17(1):13–18

    CAS  PubMed  Google Scholar 

  • Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14(4):593–605

    CAS  PubMed  Google Scholar 

  • Storz P, Toker A (2003) Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 22(1):109–120

    CAS  PubMed  Google Scholar 

  • Storz P, Doppler H, Toker A (2004a) Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 24(7):2614–2626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storz P, Doppler H, Toker A (2004b) Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB. Mol Pharmacol 66(4):870–879

    CAS  PubMed  Google Scholar 

  • Storz P, Doppler H, Toker A (2005a) Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol 25(19):8520–8530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storz P et al (2005b) Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochem J 387(Pt 1):47–55

    CAS  PubMed  Google Scholar 

  • Storz P et al (2009) FOXO3a promotes tumor cell invasion through the induction of matrix metalloproteinases. Mol Cell Biol 29(18):4906–4917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun G, Kemble DJ (2009) To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. Cell Cycle 8(15):2353–2355

    CAS  PubMed  Google Scholar 

  • Sundaresan M et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299

    CAS  PubMed  Google Scholar 

  • Sundaresan M et al (1996) Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 318(Pt 2):379–382

    CAS  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    CAS  PubMed  Google Scholar 

  • Takeda K et al (2003) Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 28(1):23–29

    CAS  PubMed  Google Scholar 

  • Tanno T, Matsui W (2011) Development and maintenance of cancer stem cells under chronic inflammation. J Nippon Med Sch 78(3):138–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiku ML, Liesch JB, Robertson FM (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. Enhancement by cytokines. J Immunol 145(2):690–696

    CAS  PubMed  Google Scholar 

  • Tobar N et al (2008) RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFkappaB-dependent mechanism. Cancer Lett 267(1):125–132

    CAS  PubMed  Google Scholar 

  • Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    CAS  PubMed  Google Scholar 

  • Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375

    CAS  PubMed  Google Scholar 

  • Trachootham D et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    CAS  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    CAS  PubMed  Google Scholar 

  • van Wetering S et al (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 115(Pt 9):1837–1846

    PubMed  Google Scholar 

  • Wang M et al (2005) Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene 24(55):8154–8166

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2007) The endogenous reactive oxygen species promote NF-kappaB activation by targeting on activation of NF-kappaB-inducing kinase in oral squamous carcinoma cells. Free Radic Res 41(9):963–971

    CAS  PubMed  Google Scholar 

  • Ward JF (1985) Biochemistry of DNA lesions. Radiat Res Suppl 8:S103–S111

    CAS  PubMed  Google Scholar 

  • Wells-Knecht MC et al (1997) Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. J Clin Invest 100(4):839–846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenk J et al (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem 274(36):25869–25876

    CAS  PubMed  Google Scholar 

  • Werner E, Werb Z (2002) Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158(2):357–368

    CAS  PubMed  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    CAS  PubMed  Google Scholar 

  • Wood ZA et al (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    CAS  PubMed  Google Scholar 

  • Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705

    CAS  PubMed  Google Scholar 

  • Xia C et al (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67(22):10823–10830

    CAS  PubMed  Google Scholar 

  • Xin M, Deng X (2005) Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem 280(11):10781–10789

    CAS  PubMed  Google Scholar 

  • Xu YC et al (2002) Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 277(31):28051–28057

    CAS  PubMed  Google Scholar 

  • Yoeli-Lerner M, Toker A (2006) Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 5(6):603–605

    PubMed  Google Scholar 

  • Yoeli-Lerner M et al (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20(4):539–550

    CAS  PubMed  Google Scholar 

  • Zhang R et al (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13(12):1465–1478

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Heike Döppler and Jenni Bachhofer for critical reading of the manuscript. Work in the Storz laboratory is supported by the NIH grants GM86435 and CA140182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Storz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Storz, P. (2013). Oxidative Stress in Cancer. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_15

Download citation

Publish with us

Policies and ethics