Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits

Abstract

Over the past two decades, many studies reported the benefits of higher 25-hydroxyvitamin D [25(OH)D] concentrations for nonskeletal effects. Researchers found significant benefits in reducing risk of acute respiratory tract infections, many types of cancer, type 2 diabetes mellitus, premature death, and adverse pregnancy and birth outcomes. In addition, 25(OH)D concentrations are low for various reasons in several categories of people, including the obese, those with dark skin living at higher latitudes, the elderly, and those who do not eat much eggs, fish, meat, or vitamin D fortified milk. Measuring 25(OH)D concentrations is one way to both increase the awareness of vitamin D’s importance in maintaining good health and to encourage vitamin D supplementation or increased solar ultraviolet-B exposure to sustain well-being throughout life by reducing disease incidence. Although 20 ng/ml seems adequate to reduce risk of skeletal problems and acute respiratory tract infections, concentrations above 30 ng/ml have been associated with reduced risk of cancer, type 2 diabetes mellitus, and adverse pregnancy and birth outcomes. Thus, judicious testing of 25(OH)D concentrations could reduce disease incidence and make treatment expenditures more cost-effective.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pludowski P, Holick MF, Grant WB, Konstantynowicz J, Mascarenhas MR, Haq A, et al. Vitamin D supplementation guidelines. J steroid Biochem Mol Biol. 2018;175:125–35. https://doi.org/10.1016/j.jsbmb.2017.01.021.

    Article  CAS  PubMed  Google Scholar 

  2. McDonnell SL, Baggerly C, French CB, Baggerly LL, Garland CF, Gorham ED, et al. Serum 25-Hydroxyvitamin D Concentrations >/=40 ng/ml Are associated with >65% lower cancer risk: pooled analysis of randomized trial and prospective cohort study. PLoS ONE. 2016;11:e0152441. https://doi.org/10.1371/journal.pone.0152441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McDonnell SL, Baggerly CA, French CB, Baggerly LL, Garland CF, Gorham ED, et al. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations >/=60 vs <20 ng/ml (150 vs 50 nmol/L): pooled analysis of two randomized trials and a prospective cohort. PLoS ONE. 2018;13:e0199265. https://doi.org/10.1371/journal.pone.0199265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380:33–44. https://doi.org/10.1056/NEJMoa1809944.

    Article  CAS  PubMed  Google Scholar 

  5. Pittas AG, Dawson-Hughes B, Sheehan P, Ware JH, Knowler WC, Aroda VR, et al. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med. 2019;381:520–30. https://doi.org/10.1056/NEJMoa1900906.

  6. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. https://doi.org/10.1136/bmj.i6583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mirhosseini N, Vatanparast H, Kimball SM. The association between serum 25(OH)D status and blood pressure in participants of a community-based program taking vitamin D supplements. Nutrients. 2017;9:E1244. https://doi.org/10.3390/nu9111244.

    Article  CAS  PubMed  Google Scholar 

  8. McDonnell SL, Baggerly KA, Baggerly CA, Aliano JL, French CB, Baggerly LL, et al. Maternal 25(OH)D concentrations >/=40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS ONE. 2017;12:e0180483. https://doi.org/10.1371/journal.pone.0180483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  10. Bilinski K, Boyages S. Evidence of overtesting for vitamin D in Australia: an analysis of 4.5 years of Medicare Benefits Schedule (MBS) data. BMJ Open 2013;3. https://doi.org/10.1136/bmjopen-2013-002955.

  11. Basatemur E, Hunter R, Horsfall L, Sutcliffe A, Rait G. Costs of vitamin D testing and prescribing among children in primary care. Eur J Pediatr. 2017;176:1405–9. https://doi.org/10.1007/s00431-017-2986-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woodford HJ, Barrett S, Pattman S. Vitamin D: too much testing and treating? Clin Med (Lond). 2018;18:196–200. https://doi.org/10.7861/clinmedicine.18-3-196.

    Article  Google Scholar 

  13. Alazzeh A, Cooper MM, Bailey B, Youssef DA, Manning T, Peiris AN. Vitamin D status and monitoring in female veterans. Women Health. 2015;55:367–77. https://doi.org/10.1080/03630242.2015.1022685.

    Article  PubMed  Google Scholar 

  14. Rockwell M, Kraak V, Hulver M, Epling J. Clinical management of low vitamin D: a scoping review of physicians’ practices. Nutrients. 2018;10:E493. https://doi.org/10.3390/nu10040493.

  15. Crowe FL, Jolly K, MacArthur C, Manaseki-Holland S, Gittoes N, Hewison M, et al. Trends in the incidence of testing for vitamin D deficiency in primary care in the UK: a retrospective analysis of The Health Improvement Network (THIN), 2005–2015. BMJ Open. 2019;9:e028355. https://doi.org/10.1136/bmjopen-2018–028355.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Figueiredo ACC, Cocate PG, Adegboye ARA, Franco-Sena AB, Farias DR, de Castro MBT, et al. Changes in plasma concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D during pregnancy: a Brazilian cohort. Eur J Nutr. 2018;57:1059–72. https://doi.org/10.1007/s00394-017-1389-z.

    Article  CAS  PubMed  Google Scholar 

  17. Yuan Y, Tai W, Xu P, Fu Z, Wang X, Long W, et al. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: a nested case-control study and meta-analysis. J Matern Fetal Neonatal Med. 2019:1–10. https://doi.org/10.1080/14767058.2019.1640675.

  18. Fogacci S, Fogacci F, Banach M, Michos ED, Hernandez AV, Lip GYH, et al. Vitamin D supplementation and incident preeclampsia: a systematic review and meta-analysis of randomized clinical trials. Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.08.015.

  19. Zhang Y, Gong Y, Xue H, Xiong J, Cheng G. Vitamin D and gestational diabetes mellitus: a systematic review based on data free of Hawthorne effect. BJOG. 2018;125:784–93. https://doi.org/10.1111/1471-0528.15060.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia-Serna AM, Morales E. Neurodevelopmental effects of prenatal vitamin D in humans: systematic review and meta-analysis. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0357-9.

  21. Rostami M, Tehrani FR, Simbar M, Bidhendi Yarandi R, Minooee S, Hollis BW, et al. Effectiveness of prenatal vitamin D deficiency screening and treatment program: a stratified randomized field trial. J Clin Endocrinol Metab. 2018;103:2936–48. https://doi.org/10.1210/jc.2018-00109.

    Article  PubMed  Google Scholar 

  22. Wagner CL, Hollis BW. The implications of vitamin D status during pregnancy on mother and her developing child. Front Endocrinol. 2018;9:500. https://doi.org/10.3389/fendo.2018.00500.

    Article  Google Scholar 

  23. Vasarhelyi B, Satori A, Olajos F, Szabo A, Beko G. [Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period]. Orv Hetil. 2011;152:1272–7. https://doi.org/10.1556/OH.2011.29187.

    Article  PubMed  Google Scholar 

  24. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8. https://doi.org/10.1172/JCI112134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu JQ. Mortality Patterns Between Five States With Highest Death Rates and Five States With Lowest Death Rates: United States, 2017. Hyattsville: National Center for Health Statistics; 2019.

  26. Garland CF, Kim JJ, Mohr SB, Gorham ED, Grant WB, Giovannucci EL, et al. Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D. Am J public health. 2014;104:e43–50. https://doi.org/10.2105/AJPH.2014.302034.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grant WB. An estimate of the global reduction in mortality rates through doubling vitamin D levels. Eur J Clin Nutr. 2011;65:1016–26. https://doi.org/10.1038/ejcn.2011.68. e-pub ahead of print 2011/07/07.

    Article  CAS  PubMed  Google Scholar 

  28. Ginde AA, Liu MC, Camargo CA Jr. Demographic differences and trends of vitamin D insufficiency in the US population, 1988-2004. Arch Intern Med. 2009;169:626–32. https://doi.org/10.1001/archinternmed.2008.604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aloia JF. African Americans, 25-hydroxyvitamin D, and osteoporosis: a paradox. Am J Clin Nutr. 2008;88:545S–50S. https://doi.org/10.1093/ajcn/88.2.545S.

    Article  CAS  PubMed  Google Scholar 

  30. Grant WB, Peiris AN. Differences in vitamin D status may account for unexplained disparities in cancer survival rates between African and white Americans. Derm-Endocrinol. 2012;4:85–94. https://doi.org/10.4161/derm.19667.

    Article  CAS  Google Scholar 

  31. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol. 2000;39:57–106. https://doi.org/10.1006/jhev.2000.0403.

    Article  CAS  PubMed  Google Scholar 

  32. Crowe FL, Steur M, Allen NE, Appleby PN, Travis RC, Key TJ. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: results from the EPIC-Oxford study. Public health Nutr. 2011;14:340–6. https://doi.org/10.1017/S1368980010002454.

    Article  PubMed  Google Scholar 

  33. Grant WB, Fakhoury HMA, Karras SN, Al Anouti F, Bhattoa HP. Variations in 25-Hydroxyvitamin D in Countries from the Middle East and Europe: the roles of UVB Exposure and diet. Nutrients. 2019;11:E2065. https://doi.org/10.3390/nu11092065.

    Article  PubMed  Google Scholar 

  34. Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM cardiovascular Dis. 2016;5:2048004016633371. https://doi.org/10.1177/2048004016633371.

    Article  Google Scholar 

  35. Moukayed M, Grant WB. Linking the metabolic syndrome and obesity with vitamin D status: risks and opportunities for improving cardiometabolic health and well-being. Diabetes Metab Syndr Obes. 2019;12:1437–47. https://doi.org/10.2147/DMSO.S176933.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jungert A, Roth HJ, Neuhauser-Berthold M. Serum 25-hydroxyvitamin D3 and body composition in an elderly cohort from Germany: a cross-sectional study. Nutr Metab. 2012;9:42. https://doi.org/10.1186/1743-7075-9-42.

    Article  CAS  Google Scholar 

  37. Lee SH, Kim SM, Park HS, Choi KM, Cho GJ, Ko BJ, et al. Serum 25-hydroxyvitamin D levels, obesity and the metabolic syndrome among Korean children. Nutr, Metab, cardiovascular Dis: NMCD. 2013;23:785–91. https://doi.org/10.1016/j.numecd.2012.04.013.

    Article  CAS  PubMed  Google Scholar 

  38. Heaney RP, Horst RL, Cullen DM, Armas LA. Vitamin D3 distribution and status in the body. J Am Coll Nutr. 2009;28:252–6.

    Article  CAS  PubMed  Google Scholar 

  39. Zittermann A, Ernst JB, Gummert JF, Borgermann J. Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr. 2014;53:367–74. https://doi.org/10.1007/s00394-013-0634-3.

    Article  CAS  PubMed  Google Scholar 

  40. Gallagher JC, Sai A, Templin T II, Smith L. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. Ann Intern Med. 2012;156:425–37. https://doi.org/10.7326/0003-4819-156-6-201203200-00005.

    Article  PubMed  Google Scholar 

  41. Gallagher JC, Yalamanchili V, Smith LM. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J steroid Biochem Mol Biol. 2013;136:195–200. https://doi.org/10.1016/j.jsbmb.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  42. Imga NN, Karci AC, Oztas D, Berker D, Guler S. Effects of vitamin D supplementation on insulin resistance and dyslipidemia in overweight and obese premenopausal women. Arch Med Sci: AMS. 2019;15:598–606. https://doi.org/10.5114/aoms.2018.75864.

    Article  CAS  PubMed  Google Scholar 

  43. Hussain Gilani SY, Bibi S, Siddiqui A, Ali Shah SR, Akram F, Rehman MU. Obesity and diabetes as determinants of vitamin D deficiency. J Ayub Med Coll Abbottabad. 2019;31:432–35.

    PubMed  Google Scholar 

  44. Tabrizi JS, Sadeghi-Bazargani H, Farahbakhsh M, Nikniaz L, Nikniaz Z. Prevalence and associated factors of overweight or obesity and abdominal obesity in iranian population: A Population-based Study of Northwestern Iran. Iran J Public Health. 2018;47:1583–92.

    PubMed  PubMed Central  Google Scholar 

  45. Zhang FF, Al Hooti S, Al Zenki S, Alomirah H, Jamil KM, Rao A, et al. Vitamin D deficiency is associated with high prevalence of diabetes in Kuwaiti adults: results from a national survey. BMC Public Health. 2016;16:100. https://doi.org/10.1186/s12889-016-2758-x.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Al Zarooni AAR, Al Marzouqi FI, Al Darmaki SH, Prinsloo EAM, Nagelkerke N. Prevalence of vitamin D deficiency and associated comorbidities among Abu Dhabi Emirates population. BMC Res Notes. 2019;12:503. https://doi.org/10.1186/s13104-019-4536-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. WHO. World Health Statistics 2016: Annex B: Tables of health statistics by country, WHO region and globally. Report no: 978 92 4 156526 4. Geneva: World Health Organization; 2016.

  48. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133:187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bazzano LA, He J, Muntner P, Vupputuri S, Whelton PK. Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med. 2003;138:891–7. https://doi.org/10.7326/0003-4819-138-11-200306030-00010.

    Article  PubMed  Google Scholar 

  50. Wang L, Song Y, Manson JE, Pilz S, Marz W, Michaelsson K, et al. Circulating 25-hydroxy-vitamin D and risk of cardiovascular disease: a meta-analysis of prospective studies. Circ Cardiovasc Qual Outcomes. 2012;5:819–29. https://doi.org/10.1161/CIRCOUTCOMES.112.967604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi H, Chen H, Zhang Y, Li J, Fu K, Xue W, et al. 25-Hydroxyvitamin D level, vitamin D intake, and risk of stroke: a dose-response meta-analysis. Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.08.029.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou R, Wang M, Huang H, Li W, Hu Y, Wu T. Lower Vitamin D Status Is Associated With An Increased Risk Of Ischemic Stroke: A Systematic Review And Meta-analysis. Nutrients. 2018;10:E277. https://doi.org/10.3390/nu10030277.

    Article  CAS  PubMed  Google Scholar 

  53. Barbarawi M, Kheiri B, Zayed Y, Barbarawi O, Dhillon H, Swaid B, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019. https://doi.org/10.1001/jamacardio.2019.1870.

  54. Grant WB, Boucher BJ, Bhattoa HP, Lahore H. Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations. J steroid Biochem Mol Biol. 2018;177:266–9. https://doi.org/10.1016/j.jsbmb.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  55. Grant WB, Bhattoa HP, Boucher BJ. Seasonal variations of U.S. mortality rates: Roles of solar ultraviolet-B doses, vitamin D, gene exp ression, and infections. J steroid Biochem Mol Biol. 2017;173:5–12. https://doi.org/10.1016/j.jsbmb.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  56. Kroll MH, Bi C, Garber CC, Kaufman HW, Liu D, Caston-Balderrama A, et al. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PloS ONE. 2015;10:e0118108. https://doi.org/10.1371/journal.pone.0118108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5:3993–4021. https://doi.org/10.3390/nu5103993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V, Wang M, Cook NR, et al. Circulating vitamin D and colorectal cancer risk: an International Pooling Project of 17 Cohorts. J Natl Cancer Inst. 2019;111:158–69. https://doi.org/10.1093/jnci/djy087.

    Article  CAS  PubMed  Google Scholar 

  59. Maalmi H, Walter V, Jansen L, Boakye D, Schottker B, Hoffmeister M, et al. Association between blood 25-hydroxyvitamin D levels and survival in colorectal cancer patients: an updated systematic review and meta-analysis. Nutrients. 2018;10:E896. https://doi.org/10.3390/nu10070896.

  60. Madden JM, Murphy L, Zgaga L, Bennett K. De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. Breast Cancer Res Treat. 2018;172:179–90. https://doi.org/10.1007/s10549-018-4896-6.

    Article  CAS  PubMed  Google Scholar 

  61. Grant WB, Boucher BJ. Why secondary analyses in vitamin d clinical trials are important and how to improve vitamin D clinical trial outcome analyses—a comment on “extra-skeletal effects of vitamin D, nutrients 2019, 11, 1460”. Nutrients. 2019;11:2182. https://doi.org/10.3390/nu11092182.

    Article  PubMed Central  Google Scholar 

  62. Zhu M, Wang T, Wang C, Ji Y. The association between vitamin D and COPD risk, severity, and exacerbation: an updated systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016;11:2597–607. https://doi.org/10.2147/COPD.S101382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006;134:1129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91:1255–60. https://doi.org/10.3945/ajcn.2009.29094.

    Article  CAS  PubMed  Google Scholar 

  65. Amrein K, Papinutti A, Mathew E, Vila G, Parekh D. Vitamin D and critical illness: what endocrinology can learn from intensive care and vice versa. Endocr Connect. 2018;7:R304–15. https://doi.org/10.1530/EC-18-0184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Haan K, Groeneveld AB, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18:660. https://doi.org/10.1186/s13054-014-0660-4.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moromizato T, Litonjua AA, Braun AB, Gibbons FK, Giovannucci E, Christopher KB. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med. 2014;42:97–107. https://doi.org/10.1097/CCM.0b013e31829eb7af.

    Article  CAS  PubMed  Google Scholar 

  68. Quraishi SA, Bittner EA, Blum L, McCarthy CM, Bhan I, Camargo CA Jr. Prospective study of vitamin D status at initiation of care in critically ill surgical patients and risk of 90-day mortality. Crit Care Med. 2014;42:1365–71. https://doi.org/10.1097/CCM.0000000000000210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arnson Y, Gringauz I, Itzhaky D, Amital H. Vitamin D deficiency is associated with poor outcomes and increased mortality in severely ill patients. QJM. 2012;105:633–9. https://doi.org/10.1093/qjmed/hcs014.

    Article  CAS  PubMed  Google Scholar 

  70. Braun AB, Gibbons FK, Litonjua AA, Giovannucci E, Christopher KB. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit Care Med. 2012;40:63–72. https://doi.org/10.1097/CCM.0b013e31822d74f3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matthews LR, Ahmed Y, Wilson KL, Griggs DD, Danner OK. Worsening severity of vitamin D deficiency is associated with increased length of stay, surgical intensive care unit cost, and mortality rate in surgical intensive care unit patients. Am J Surg. 2012;204:37–43. https://doi.org/10.1016/j.amjsurg.2011.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Langlois PL, Szwec C, D’Aragon F, Heyland DK, Manzanares W. Vitamin D supplementation in the critically ill: a systematic review and meta-analysis. Clin Nutr. 2018;37:1238–46. https://doi.org/10.1016/j.clnu.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  73. Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. Jama. 2014;312:1520–30. https://doi.org/10.1001/jama.2014.13204.

    Article  CAS  PubMed  Google Scholar 

  74. Quraishi SA, De Pascale G, Needleman JS, Nakazawa H, Kaneki M, Bajwa EK, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled Trial. Crit Care Med. 2015;43:1928–37. https://doi.org/10.1097/CCM.0000000000001148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han JE, Jones JL, Tangpricha V, Brown MA, Brown LAS, Hao L, et al. high dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Transl Endocrinol. 2016;4:59–65. https://doi.org/10.1016/j.jcte.2016.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer’s disease: from genetics to biomarkers. Hormones. 2019;18:7–15. https://doi.org/10.1007/s42000-018-0086-5.

    Article  PubMed  Google Scholar 

  77. Nelis SM, Wu YT, Matthews FE, Martyr A, Quinn C, Rippon I, et al. The impact of co-morbidity on the quality of life of people with dementia: findings from the IDEAL study. Age Ageing. 2019;48:361–7. https://doi.org/10.1093/ageing/afy155.

    Article  PubMed  Google Scholar 

  78. Bailey BA, Manning T, Peiris AN. Vitamin D testing patterns among six veterans medical centers in the Southeastern United States: links with medical costs. Mil Med. 2012;177:70–76. https://doi.org/10.7205/milmed-d-11-00204.

    Article  PubMed  Google Scholar 

  79. Der T, Bailey BA, Youssef D, Manning T, Grant WB, Peiris AN. Vitamin D and prostate cancer survival in veterans. Mil Med. 2014;179:81–84. https://doi.org/10.7205/MILMED-D-12-00540.

    Article  PubMed  Google Scholar 

  80. Hannemann A, Wallaschofski H, Nauck M, Marschall P, Flessa S, Grabe HJ, et al. Vitamin D and health care costs: results from two independent population-based cohort studies. Clin Nutr. 2018;37:2149–55. https://doi.org/10.1016/j.clnu.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  81. Annweiler C, Kabeshova A, Callens A, Paty ML, Duval GT, Holick MF. Self-administered vitamin D status predictor: older adults are able to use a self-questionnaire for evaluating their vitamin D status. PloS ONE. 2017;12:e0186578. https://doi.org/10.1371/journal.pone.0186578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chevallereau G, Legeay M, Duval GT, Karras SN, Fantino B, Annweiler C. Profiling older community-dwellers with hypovitaminosis D: a classification tree analysis. Int J Vitam Nutr Res. 2019: 1–5. https://doi.org/10.1024/0300-9831/a000591.

  83. Engelsen O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients. 2010;2:482–95. https://doi.org/10.3390/nu2050482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ferrari D, Lombardi G, Strollo M, Pontillo M, Motta A, Locatelli M. Association between solar ultraviolet doses and vitamin D clinical routine data in European mid-latitude population between 2006 and 2018. Photochem Photobiol Sci. 2019. https://doi.org/10.1039/c9pp00372j.

  85. Pilz S, Marz W, Cashman KD, Kiely ME, Whiting SJ, Holick MF, et al. Rationale and plan for vitamin D food fortification: a review and guidance paper. Front Endocrinol. 2018;9:373. https://doi.org/10.3389/fendo.2018.00373.

    Article  Google Scholar 

  86. Jaaskelainen T, Itkonen ST, Lundqvist A, Erkkola M, Koskela T, Lakkala K, et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am J Clin Nutr. 2017;105:1512–20. https://doi.org/10.3945/ajcn.116.151415.

    Article  PubMed  Google Scholar 

  87. Roth DE, Abrams SA, Aloia J, Bergeron G, Bourassa MW, Brown KH, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low- and middle-income countries. Ann N. Y Acad Sci. 2018;1430:44–79. https://doi.org/10.1111/nyas.13968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003;77:204–10.

    Article  CAS  PubMed  Google Scholar 

  89. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30. https://doi.org/10.1210/jc.2011-0385.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WBG was responsible for designing the review, conducting much of the literature search, interpretation of findings, drafting most of the paper, and updating reference lists. FAA was responsible for searching the literature, drafting a portion of the paper, and interpreting the results. MM was responsible for searching the literature, connecting and interpreting findings and drafting portions of the paper.

Corresponding author

Correspondence to William B. Grant.

Ethics declarations

Conflict of interest

WBG receives funding from Bio-Tech Pharmacal, Inc. (Fayetteville, AR, USA). The other authors have no conflicts of interest to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, W.B., Al Anouti, F. & Moukayed, M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur J Clin Nutr 74, 366–376 (2020). https://doi.org/10.1038/s41430-020-0564-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-0564-0

This article is cited by

Search

Quick links